
N94- 35053

Modelling Heterogeneous Processor Scheduling for Real Time Systems

J. F. Leathrum, R. R. Mielke, and J. W. Stoughton

Old Dominion University

Abstract

A new model is presented to describe data-

flow algorithms implemented in a

multiprocessing system. Called the

resource/data flow graph (RDFG), the model

explicitly represents cyclo-static processor

schedules as circuits of processor arcs which

reflect the order that processors execute

graph nodes. The model also allows the

guarantee of meeting hard real-time
deadlines. When unfolded, the model

identifies statically the processor schedule.
The model therefore is useful for

determining the throughput and latency of

systems with heterogeneous processors. The

applicability of the model is demonstrated

using a space surveillance algorithm.

Introduction

Improvement in throughput and latency in

hard real-time algorithms increasingly is

realized through the use of parallel

constructs. However, it is known that the

characterization of performance in parallel

systems is particularly difficult, and is

compounded when a heterogeneous

processing environment is introduced. The

processing time of a particular piece of code

is dependent on the processor type scheduled

to execute it. This may complicate the

analysis of throughput and latency. Current

strategies focus on the use of data-flow

graphs to describe algorithm play, and then

an external processor scheduling scheme is

imposed for graph execution. A method for

the development of processor scheduling

within the data-flow model is presented. It

provides a deterministic method of

predicting the effects of various schedules,

both in homogeneous and heterogeneous

processor environments.

Scheduling tasks on parallel computers can

be divided into two categories, static

scheduling and dynamic scheduling. Static

scheduling methods [1,2,3,4,5,6] allocate

tasks to processors during compile time.

The time required to schedule is incurred

only once, independent of the number of

times the application is executed. Dynamic

scheduling methods [7,8] allocate tasks to

processors at run time, taking advantage of

current knowledge of the state of the system.

Dynamic scheduling methods generally

provide better resource utilization, but at the

penalty of real-time overhead to complete

the scheduling. Dynamic scheduling also

may incur a degradation in expected

performance resulting from slight variations

in task time, even when the task time

decreases. Heterogeneous systems generally

employ dynamic schedulers [7,8].

The applications under consideration in this

paper have hard real-time deadlines. Once

an input arrives, the corresponding output

must be generated by some maximum time

deadline. Inputs must be accepted at some

maximum rate while still meeting

performance deadlines. Consequently,

completing tasks as early as possible is not

as important as avoiding a late finish.

The paper starts by reviewing the data-flow

graph model implemented on a homogeneous

processor system [9]. Methods of analyzing

performance are described, and are followed

by a discussion of how the graph plays in

steady state in order to establish the

121

requirements for schedules.

The paper then introduces a new model,

based on the data-flow paradigm, which

allows a schedule to be represented in the

model. The schedules used are cyclo-static

[1]. These schedules are characterized by

processors being scheduled to nodes in a

cycle so that each processor periodically

revisits the nodes in its cycle. Once the

schedule is included in the model, the

resulting graph can be implemented on

dynamic scheduling systems with full

guarantee of achieving hard deadlines, even

in the presence of time varying tasks.

The model is then extended to heterogeneous

processor systems. This extension allows

the same deterministic analysis of system

perform_c e. In this manner different
schedules can be compared for their ability

to meet deadlines. Finally the system is

applied to an example of a space

surveillance algorithm [9] to demonstrate the

analytical ability of the model.

2

2

2

source sink

Figure 1. Data-flow graph (DFG)

Data-flow Model

The ensuing discussion is based on a

data-flow model which employs a data-flow

graph (DFG) [10]. Nodes in the graph

represent tasks or modules of code. Each

module has a maximum execution time, but

122

times may vary to smaller values. Arcs in

the graph represent data dependencies

between the code modules which must be

satisfied prior to a module executing.

Tokens on an arc represent the
communication of data from one module to

another. The graph plays under the rule of
earliest fire - as soon as a node is enabled

by tokens on all incoming arcs, it fires.

Figure 1 shows an example DFG with node
times indicated next to each node.

A

B

Nodes C

D

E I ; _ _ i _ ." _ " _ :' I
I ! ! ! _ ! ! ! i i ! i i i i i :" I

]']me

Figure 2. Graph play.

Execution of the graph is initiated by source

nodes injecting data into the graph. The

graph operates with repeated inputs which

are periodic in nature. Data is consumed by

sink nodes to signify completion of a

computation. The rate of information flow

through the graph is managed by injection

control at the source. The injection rate is

set to guarantee graph performance. The

expected graph play if each node requires its

maximum time is given in Figure 2 for the

DFG in Figure 1.

The goal of the graph is to guarantee hard

real-time deadlines. These guarantees are

made based on steady state graph play.

Steady state is defined by operation with

maximum node times under repeated inputs.

Any deviation in node times should result in

no worse than steady state completion times
for nodes.

This section defines the system perfo_ance

and the associated steady state graph play.

Then the requirements a cyclo-static

schedule must meet to satisfy steady state

play are defined. This establishes the

data-flow model on which current work is

based.

Performance

Performance is based on the assumption that

there are sufficient processor resources to

execute the graph in steady state.

Performance is determined by steady state

graph play and is characterized by the

throughput and latency [1,9]. There is no

guarantee that the resource requirement is a

minimum bound, but it is sufficient to play

the graph.

Throughput is bounded by the length of the

critical circuit where the length of a circuit

is the time per token in the circuit. The

critical circuit length (CL,) is defined by

for i=l...C (1)

for a graph with C circuits, where NT i is the

total node time in circuit i and IT_ is the

number of tokens in circuit i. Throughput is

then bound by

1
TP -- (2)

CL ,

The maximum rate that data can be injected

into the graph is defined in terms of the time

between inputs (TBI) which is equivalent to

CL,.

Latency is bounded by the length of the

critical path, or the longest path from source

to sink. Latency (L) is then defined as-

L > max(PLi) for i= 1..P (3)

for P paths from source to sink, where PLi is

the length of path i.

With sufficient resources, throughput can be

maximized, and latency minimized, for a

given graph. The number of resources (R) is

bounded to meet performance requirements

and can be found as the number required to

meet steady state requirements as defined
later.

Steady State Graph Play

The purpose of the proposed model is to

predict performance of DFGs operating in

steady state with repeated inputs and where

the assigned node times are worst case

values. Steady state graph play is

completely characterized by the node firings

which occur in one time period of length

TBI [9]. This is demonstrated by a Gantt

chart termed the Total Graph Play (TGP)

diagram.

D(1)

J
,,%

B(2) ,:D(2)

,,<

iC(2)
i

A(2)

i

>

F

f,

t+TBI

Figure 3. Total Graph Play.

The TGP diagram is constructed by drawing

a Gantt chart of length TBI, with time

ranging from t to t+TBI. The nodes are

inserted into the TGP diagram using their
worst case values. The nodes in the critical

path are placed in the TGP diagram first.

Node firing times are wrapped around from
time t+TBI to time t as needed to indicate a

change in data packet number. Then the

remaining graph nodes are placed in the

123

TGP basedon their precedence relationship

with existing nodes. Each node in the TGP

diagram is associated with an iteration

number which identifies the input data

packet that produced a firing of the node.
The iteration number is decremented by one

during a wrap around the TGP diagram.
This is a result of the times t and t+TBI

being equivalent in steady state, but for

different input data packets. Thus all node

firings in a TGP diagram are not necessarily

associated with the same input. The TGP

diagram for the graph in Figure 1 is shown

in Figure 3.

Steady State Scheduling Requirements

The goal of steady state scheduling is to

provide a schedule which will guarantee

graph play with performance no worse than

steady state play. This requires that

processors be available to graph nodes no
later than worst case steady state graph play

dictates. It is not the purpose of this paper

to determine a schedule, but rather to model

and analyze schedules. However, some

important criteria which schedules must meet

are presented.

The first criterion for a schedule concerns

the use of processor idle time. Different
schedules cause different distributions of

processor idle time. However, all schedules
must meet the constraints established by the

TGP diagram and data-flow graph

precedence relations. Cyclo-static schedules

can be represented by circuits of nodes over

which processors traverse during the play of

the graph. There may be one or more

circuits for a given graph and schedule, and

each processor may reside on only one

circuit. As a processor traverses from one

node to another on this circuit, it

accumulates a non-negative idle time while

waiting for the next node firing. Each

transition appears in the TGP diagram once

since each node fires exactly once in the

interval TBI. Thus, the total time processors

spend in graph play during the interval of

TGP diagram is the sum of the total

computing effort O'CE), which is the sum of

all node times, and the idle time (T,.,a,). This

must equal the total computing time

available in the TGP diagram which is given

by the number of available processors (R)

times TBI resulting in the requirement

R'TBI ffi TCE+T_. (4)

This equation represents a necessary

requirement for a schedule, where the

schedule determines the value for Ti,_.

An example schedule for the TGP diagram

in Figure 3 consists of two processor

circuits, one containing nodes A, D, E, C

and the other containing only node B. The

idle times that processors spend between the

node pairs are: node A to node D, 0; node D

to node E, 0; node E to node C, 1; node C

to node A, 2; and node B to node B, 1.

Thus there are 4 processors, TBI is 4, TCE

is 12, and Tia_, is 4. This results in Equation

4 taking the form 4*4 = 12+4, which meets

the requirements.

Graph Markings

The graph markings (token-arc pairings) are

necessary for the following work. First a set

of steady state markings are found. Then

the initial graph markings are determined.
?

For steady state markings, the approach is to

find a set of markings which satisfy the TGP

diagram. The original graph is also needed,

including the tokens necessary to meet its
initial conditions. A timing point is then

established in the TGP diagram (time t). For

convenience, t is taken as that point in the

TGP diagram when the source fires. Then

the set of nodes with activity at time t+ are

examined. Two conditions arise: a node

fires at time t, or a node was already

124

executingat timet andcontinuesat time t÷.

A final condition is handled at time (t+TBI)

where if a node completes before time t+TBI

but the ensuing node on a outgoing arc does

not fire before time t+TBI, then a token

must be placed on the outgoing arc. The

conditions are handled by the following

procedure:

A) All nodes fh-ing at time t must have all

tokens available to fire. Therefore,

tokens are placed on all incoming edges

for these nodes. If a token already

existed on an edge from the original

graph, an additional token should not be
added.

B) All nodes currently executing are

considered as going short and

completed at time r. When a node

finishes, it deposits tokens on all of its

outgoing edges. Therefore appropriate

tokens are placed to indicate the

completion of each node in this

category.

C) For all nodes in the graph, check all

nodes associated with outgoing arcs. If
these nodes do not fire before t+TBI in

the TGP diagram, then place a token on
the arc between the two nodes.

When performed on the DFG in Figure 1,
two new tokens are added: between nodes D

and E, and between nodes C and E.

Given the markings for the graph in steady

state, a set of initial markings are determined

to allow the graph to initiate play and

achieve steady state. The purpose for

finding the initial markings is to remove

some tokens from the graph to simplify

analysis. These markings are found by

advancing the steady state markings as far as

they will go without injecting new inputs.

This is a marking coinciding with the graph

being played in steady state and then having

inputs stopped and allowing the graph to

come to rest. This all happens at some time

less than zero. Then at time 0, new inputs

are injected initiating graph play. The

transient from allowing the graph to execute

from steady state with no inputs and the

transient from initiating graph play

compliment each other allowing the graph to

return to steady state. The resulting initial

markings for the graph in Figure 1 match the

initial markings provided.

Processor Schedule Model

A model is presented which explicitly

incorporates processor scheduling in the

data-flow context. The model is intended

for use with hard real-time systems where

meeting deadlines is the primary concern.

The model is developed by utilizing the

features of cyclo-static scheduling [1] in the

data-flow graph such that the graph will play

by the rules of the schedule in the presence

of time varying nodes and dynamic
schedulers.

The model is first presented for a

homogeneous processor system and then

later extended to heterogeneous systems.

The homogeneous system demonstrates the
new model which includes resource

scheduling in the data-flow graph. It will

also provide the mechanism for development

of the necessary tools for heterogeneous

systems.

Resource�Data-Flow Graph (RDFG)

A new data-flow graph model, called the

resource/data flow graph (RDFG), is

introduced which explicitly shows the

relationship between resources and nodes,.

In this paper, the resources are considered to

be processors, although the model is
extendable to other resources such as

communication channels. The RDFG

introduces new arcs in the DFG to describe

how processors migrate through the graph

nodes in a cyclo-static schedule. Processors

125

are represented as tokens in the graph, and

thus are treated similarly to data in the

evaluation of the graph.

Figure4. Resource/Data Flow Graph

(RDFG).

The RDFG is developed from the DFG and

a given cyclo-static Schedule. A cyclo-static

schedule may be represented as a set of

circuits, called processor circuits, describing

the order in which processors execute nodes.

Processor circuits are formed by adding arcs,

called processor arcs, to the original DFG so

that a token representing a processor, when

placed in this circuit, visits in order all nodes

assigned to the processor. Each circuit may

have multiple processors, but each processor

can reside on only one circuit. The resulting

circuits are disjoint and encompass all nodes.

An example RDFG for the cyclo-static

schedule developed earlier and for the graph

in Figure 1 is illustrated in Figure 4.

Given a RDFG, finding a set of steady state

markings is the next step in the analysis.

This is done by the same process as for the

DFG. These markings introduce the

necessary processor tokens representing

processors onto each processor circuit. A

fully static schedule is represented as an

RDFG where all processor circuits have only

one token. Figure 5 is a possible set of

steady state markings imposed on Figure 4.

The initial graph markings are shown in

Figure 6.

126

Figure 5. Steady state graph markings.

Figure 6. Initial graph markings.

Graph Reduction

The addition of processor arcs to the DFG

may create redundant arcs in the RDFG in

terms of necessary precedence relationships.

It is helpful to delete redundant arcs to

reduce the number of paths and circuits

which must be C0nsldered during analysis

and to better allow observance of graph

activities. =

The determination of Which arcs are

redundant is based on node precedence. An

arc from node a to node b is redundant (and

thus can be removed) if an alternative path

exists from a to b. The alternate path may

contain several arcs (and thus have stronger

precedence relationships) or may be a single
arc. If a single arc, the tWO arcs are

equivalent, and thus either arc may be

removed. The following rule may be used

to eliminate one of the arcs. if the two arcs

are of the same type (data or

control/processor),thenrandomlyselectone
for elimination. If they are different, then

eliminate the control arc since the data arc

has more meaning in data-flow, maintaining

the original graph in the RDFG, while the

processor arc is a means only to scheduling.

Figure 7 was reduced in preparation for

analysis.

Figure 7. Reduced RDFG.

Unfolded Graph

A third graph is introduced to allow

improved observation of individual node

and processor behavior which is particularly

useful in the heterogeneous system

discussion. This graph is an unfolded graph

such that all processor-node combinations

are presented. The object is to create an

equivalent graph having only one processor

token per processor circuit. This means that

each node in the unfolded graph is executed

by only one processor which allows the

examination of the relationship of a node to

a specific processor. The foundation of the

unfolded graph is found in [2] where the

purpose was to transform a data-flow graph

to allow fully static scheduling. The

difference between their work and the

current work is the RDFG already has a

schedule imposed which may reduce the

necessary unfoldings.

The basic method of developing the unfolded

graph is to replicate the graph k times, where

k is the greatest common multiple of the

Figure 8. Unfolded RDFG (k = 3).

number of processor tokens on each

processor circuit. Arcs with initial tokens

are moved to reflect the data dependencies
between iterations. The source of the arc

remains intact, but the destination is moved

from the node in iteration i to the

corresponding node in iteration (i+n) mod k
for n initial tokens on the arc. The modulus

function results in iteration k-1 cycling back

to iteration 0 for repeated inputs. Figure 8

is a k-unfolded RDFG (k=3) for the graph

shown in Figure 7.

Hard Deadline Guarantee

It is a well known phenomenon that small
reductions in the execution time of a node

may adversely affect performance, thus

127

preventing the system from meeting

deadlines. The reason performance may

degrade is that the graph may enter resource
saturation where there are more enabled

nodes than processors and some work must

be delayed beyond the worst case start time.

Much work has been done to address this

problem [11,12].

Static scheduling inherently avoids resource

saturation and thus guarantees worst case

performance. The new model extends this

property to dynamically scheduled systems.

The RDFG is a graph that plays on a

dynamic system just as the equivalent DFG

would play on a static system. However, the
RDFG has more restrictive precedent

constraints as a result of the processor arcs.

The processor arcs guarantee that a

processor is available for a node to fire

without dictating which processor is used.

The static schedule simply makes a direct

association between processors and tokens

on processor edges which is not necessary in

dynamic scheduling.

Heterogeneous Processor Systems

The purpose of this section is to demonstrate

the utility of the unfolded RDFG in

analyzing heterogeneous systems. The

construction of the unfolded RDFG depends

on the specification of a processor schedule.

The scheduling approach used for this paper

is to assume a worst case processor

schedule. It is known that this precludes the

representation of certain valid heterogeneous

schedules, but developing heterogeneous

schedules directly for the RDFG is left for

future work.

The method used addresses the standard

practice often used for heterogeneous

systems where a node is scheduled

exclusively on one class of processors. In

the RDFG, such a schedule appears as

128

multiple processor circuits, where each such

circuit is assigned a single class of

processor. For the schedule used in the

previous section in Figure 7, node B would

execute on one class of processor and the
other nodes would execute on a second class

of processor. This is a special case of the

systems under consideration.

This section first demonstrates the benefits

of using the unfolded RDFG. Then, the

analysis of the graph to determine available

throughput and latency improvement for a

given schedule is presented. The effect of

different processor assignments to the RDFG

is shown followed by a discussion of

heuristic approaches for improving

performance for a given schedule operating

in a heterogeneous environment.

Unfolded RDFG

The unfolded RDFG is particularly useful for

evaluating heterogeneous systems. The

reason for this is the fully static nature of
the RDFG which allows each node to be

mapped to a single processor. Thus, the

effect of a processor on the node processing
time can be characterized and included in

the analysis.

For example, suppose that two of the four

processors in the unfolded RDFG in Figure

8 are capable of executing nodes one time
unit faster than the time indicated in each

node. Then the node times in the pr_esSor

circuits can be adjusted to reflect the

capabilities of the specific processor

assigned to the circuit. Figure 9 illustrates

an unfolded RDFG for a given processor

assignment.

Performance Characteristics

Once the unfolded RDFG is found for a

given schedule and processor assignment, the

system performance can b/_computed. The

methods of finding throughput and latency in

f

,° ,•°'

Figure 9. Unfolded RDFG with initial

tokens and processor assignment.

the unfolded graph are similar to those used

in the original DFG. Performance is still

limited by the critical path and critical

circuit for the given graph.

Throughput." The throughput for the

heterogeneous system is found by

determining the critical circuit in the

unfolded RDFG. However, this critical

circuit defines the throughput for k inputs

given a k-unfolded RDFG. Thus the lower

bound on throughput (TPLB) is

TP_- k
CLcr(unfokted RDFG) (5)

though the graph as defined may not be able

to play with periodic inputs at this

throughput.

Figure 10. Injection control of an unfolded
RDFG.

To reestablish periodic inputs, injection

control is imposed on the k sources. The

sources are placed in a circuit of length C
with k nodes of time C/k between each

source firing, as shown in Figure 10. In this

manner, each source fires periodically every

C time units. Provided CIk > TPt_, C/k will

dictate the actual throughput. This is

possible since the addition of the circuit at

the set of sources creates no other circuits.

Injection control allows a throughput to be

defined with periodic inputs by imposing a
critical circuit about the sources.

The critical circuit for the graph in Figure 9

has a length of 10. Therefore, each source

can fire every 10 time units, and the 3

sources can be made periodic by f'wing them

in sequence separated by _> 10/3 time units.

Latency: Prior to controlling the sources,

latencies can be computed from each source

to its corresponding sink (Li for iteration i).

The lower bound latency for the given

schedule and assignment is

129

--max(L) for i=L.k. (e)

Imposing periodic inputs may have adverse

effects on latency, possibly even increasing

latency above Lwc. This occurs because
some sources may fire before the graph is

ready to accept them. Thus, tokens will wait

at some point in the critical path,, increasing

the total time spent on the critical path.

To compute the periodic latency (Lp), the

aperiodic and periodic fLring sequences for

sources must be compared. The issue is

whether a periodic source fires earlier or

later than its corresponding aperiodic source.

Firing later is not an issue since the source

then lags behind the graph, and thus will not

add any time to the latency. Firing early

means the graph will have to catch up

adding the amount the source fired early to

the latency (EF where EF = 0 if the source

f'Lres late). The resulting latency is

Lp = max(Li+EF _) for i=l...k (7)

for the graph. Note that the latency can be

improved up to Lt_ by increasing the

throughput which reduces EFi. Therefore, a

trade off between throughput and latency is

available for improving performance.

For the graph in Figure 9, the three iterations

have latencies of 4, 6, and 6 respectively

prior to injection control at the inputs. If the

inputs are fhrxt periodically every 10/3 time

units, then iteration 0 fires on time, iteration

1 fires 1 1/3 time units after the earliest it

could, and iteration 2 fires 1/3 time units

early. Therefore, the latencies remain the

same under periodic inputs.

Processor Assignment =
An alternative to decreasing throughpu_ to

preserve latency is to consider other

processor assignments. A one to one

assignment of processors to processor arcs is

made for a given schedule. Different

assignments produce different performance

characteristics. Therefore, the performance

obtained by various assignments should be
considered.

The different assignments change

performance in several ways. Assignments

potentially affect latency on different

iterations, the critical circuit of the unfolded

RDFG, and the idle time spent on the critical

path on different iterations. The

combination of these three factors may result

in many different performance points.

The various assignments should be compared

to determine the appropriate choice. Not all

markings need to be considered since many

potential markings can be proven equivalent.

The appropriate assignment will then be

based on the desired goal of the

implementation, either to improve throughput

or latency.

Schedule Potential

An attempt is made to provide insight to the

ability for a given schedule to have

improved performance over other potential

schedules for a given graph. A schedule

ideally should allow nodes to have lower

execution times without providing further

graph constraints beyond those present in the

original DFG. Different schedules change

node times in heterogeneous systems, and

evaluating how different schedules improve

performance requires _ knowledge of the

peformance goals for a particular

heterogeneous system. But the ability of a

schedule to avoid imposing further graph

constraints can be characterized.

Ideally, processor arcs in the unfolded

RDFG should have little influence on

throughput improvement. If the destination

node of a processor arc is allowed to f'Lre

130 ,i

early by its incomingdataarcs,theprocessor
arc may delaythe nodeuntil a processoris
available. In this mannerthe processorarc
imposesfurther constraintsupon the graph.
This restricts how much faster the graph
runs over and above the data-flow
requirements.Thus scheduleswhich result
in more idle time on processorarcs are
desirable.

PASIG 317 107 SID

"@1247
TRACK-ERRORS

Figure 11. DFG for a space surveillance

algorithm.

A Space Application

An example algorithm is presented as a test

case for the model. The algorithm is a space

surveillance algorithm [9]. Figure 11

illustrates the DFG for the algorithm. At

each iteration, the algorithm accepts as

inputs the current position coordinates of

multiple targets located in the instrument's

field of view. The algorithm identifies each

target and plots the target's trajectory in

three dimensional space. Node labels

describe the algorithm operations, and the

relative time required for each operation is
shown beside the node. Note that a control

edge has been added to the graph. The extra

control edge reduces the number of required

processors from 4 to 3 on a homogeneous

processor system.

The performance measures for the DFG are

TBI = 1247 and latency = 2371 with 3

processors. Suppose that one of the

processors used was capable of executing

nodes at 75% of the specified time. The

result of scheduling this processor is

presented.

317 107

67__1247

"_.-

Figure 12. RDFG for a space surveillance

algorithm.

A possible cyclo-static schedule for the

space surveillance algorithm is for one

processor to execute node D and the other

processors to cycle through the other nodes

in a circuit consisting of nodes A-C-B-E-F

in the specified order. The resulting RDFG

is shown in Figure 12 and the unfolded

RDFG in Figure 13. When the faster

processor is applied to the D node, each D

node will execute in 936 time units. This

results in a new TBI of 1057 and a new

latency of 2060. The faster processor cannot

lower TBI further since the slow processors

handling node F now dictate the throughput.

Conclusion

The RDFG is a graph model which allows

schedule development with data-flow

constructs on parallel computing systems.

The RDFG also guarantees that hard real-

time deadlines are met. The graph will meet

deadlines even when executed on a system

with a dynamic scheduling scheme such as

a queue.

An extended RDFG, termed the unfoled

RDFG, allows addressing heterogeneous

131

317 107

............. 1057

6_77

:" _.

67- _47

Figure 13. Unfolded RDFG for a space

surveillance algorithm.

processor systems. It is a fully static form

of the RDFG where each node executes on

one processor. Then each node time can be

adjusted to describe the execution on a

specific processor for a given processor

assignment. The graph is then analyzed to

find the available performance in terms of

throughput and latency.

The unfolded RDFG was demonstrated on an

example problem for heterogeneous

processors. The space surveillance algorithm

is an example of a control system with

repeated inputs for which the model is well

suited. The unfolded RDFG provided the

ability to analyze the performance in terms

of throughput and latency.

References

[1] D.A. Schwartz, T. P. Barnwell, III,

"Cyclo-static multiprocessor

scheduling for the optimal

implementation of shift invariant flow

graphs," Proc. 1CASSP-85, Tampa,

FL, Mar. 1985.

[2] K.K. Parhi, D. G. Messerschmitt,

"Stadc rate-optimal scheduling of

iterative data-flow programs via

optimum unfolding," IEEE

Transactions on Computers, v. 40, n.

2, pp. 178-195, Feb. 1991.

[3] B. Shirazi, M. Wang, G. Pathak,

"Analysis and evaluation of heuristic

methods for static task scheduling,"

Journal of Parallel and Distributed

Computing, v. 10, pp. 222-232, 1990.

[4] S. M. Heemstra de Groot, S. H.

Gerez, O. E. Herrmann, "Range-chart-

guided iterative data-flow graph

scheduling," IEEE Transactions on

Circuits and Systems-l, v. 39, n. 5, pp.

351-364, May 1992.

[5] M. Marrakchi, "Optimal parallel

scheduling for the 2-steps graph with

constant task cost," Parallel

Computing, North-Holland, v. 18, pp.

169-176, 1992.

[6] S. Ha, E. A. Lee, "Compile-time

scheduling and assignment of data-

flow program graphs with data-

dependent iteration," IEEE

Transactions on Computers, v. C-40,

pp. 1225-1238, Nov. 1991.

[7] G.C. Sih, E. A. Lee, "A Compile-
Time Heuristic for Interconnection-

Constrained Heterogeneous Processor

Architectures," IEEE Transactions on

Parallel and Distributed Systems, v. 4,

No. 2, pp. 175-, February 1993.

[8] Y. Hu, Z. Xie, X. Lu, "Approaches to
Decentralized Control of Job

Scheduling for Homogeneous and

Heterogeneous Parallel Computing

Systems," Future Generation

Computer Systems, North-Holland, v.

6, pp. 91-96, 1990.

[9] S. Som, R. R. Mielke, J. W.

132

[10]

[11]

[12]

Stoughton, "Prediction of performance

and processor requirements in real-

time data flow architectures," IEEE

Transactions on Parallel and

Distributed Systems, v. 4, n. 11, Nov.
1993.

K. M. Kavi, B. P. Buckles, "A formal

definition of data flow graph models,"

IEEE Transactions on Computers, v.

C-35, pp. 940-948, Nov. 1986.

G. K. Manacher, "Production and

stabilization of real-time task

schedules," Journal of the Association

for Computing Machinery, v. 14, n. 3,

pp. 439-465, July 1967.
R. L. Graham, "Bounds on

multiprocessing timing anomalies,"

SIAM Journal on Applied

Mathematics, v. 17, n. 2, pp. 416-429,
March 1969.

133

